
Programming Languages and Data Access Methods December 2024

Manufacturer Programming Language Name Version
Current

Classification

General

Availability
Projected Approved

Divest:

Plan

Divest:

Execution
Prohibited

Vendor

End of

Support
References Notes

General programming

language recommendation

NA NA NA NA NA NA NA NA NA NA https://media.defense.gov/2022/Nov/10/2003112742

/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

https://insights.sei.cmu.edu/blog/rust-software-

security-a-current-state-assessment/

https://survey.stackoverflow.co/2022/

EA Direction: Use of a "memory safe" language is recommended and preferred.

Examples of memory safe languages include: C#, Go, Java®, Ruby™, Rust®, Python, and Swift®.

 Use memory safe languages! There are lots of great ones to choose from. Writing an operating system kernel or web browser? Consider Rust!

Building for iOS and macOS? Swift's got you covered. Network server? Go's a fine choice. https://www.memorysafety.org/docs/memory-safety/

The White House is urging programmers to move away from older programming languages like C and C++ in favor of “memory-safe” languages like

Rust. There’s evidence that building software with memory-safe languages can significantly reduce vulnerabilities and prevent cyberattacks, according

to a report issued Monday.

 https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

 https://www.codecademy.com/resources/blog/memory-safe-programming-languages/

In no particular order, the NSA suggests these memory-safe programming languages: Go; Rust; C#; Swift; Java; Ruby; Python; Delphi/Object ;

Pascal; and Ada. https://readwrite.com/the-nsa-list-of-memory-safe-programming-languages-has-been-updated/

The data bears out, over and over again, that when projects use unsafe languages like C and C++ they are burdened by an avalanche of security

vulnerabilities. No matter how talented the engineers, how great the investment in privilege reduction and exploit mitigations, using a language that is

not memory safe simply results in too many bugs. These bugs greatly reduce security, as well as stability and productivity.

https://www.memorysafety.org/docs/memory-safety/

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility in memory management while relying heavily on the

programmer to perform the needed checks on memory references. Simple mistakes can lead to exploitable memory-based vulnerabilities. Software

analysis tools can detect many instances of memory management issues and operating environment options can also provide some protection, but

inherent protections offered by memory safe software languages can prevent or mitigate most memory management issues. NSA recommends using

a memory safe language when possible. While the use of added protections to non-memory safe languages and the use of memory safe languages

do not provide absolute protection against exploitable memory issues, they do provide considerable protection. Therefore, the overarching software

community across the private sector, academia, and the U.S. Government have begun initiatives to drive the culture of software development towards

utilizing memory safe languages.

https://endoflife.date/

Oracle Java 24 (LTS) Projected 2026 End of Life Info: https://endoflife.date/java EA Direction: Continue updating to the latest LTS major release.

https://en.wikipedia.org/wiki/Java_(programming_language)

21 (LTS) Approved 9/19/2023 N 12/31/2023 9/30/2026 9/30/2027 9/30/2028 9/30/2031 End of Life Info: https://endoflife.date/java https://en.wikipedia.org/wiki/Java_(programming_language)

Note: Tracking N and N-1 to LTS versions only while skipping all other version between LTS versions.

20 Skipped

19 Skipped

18 Skipped

17 (LTS) Approved 9/14/2021 N-1 12/31/2021 9/30/2025 9/30/2026 9/30/2027 9/30/2029 End of Life Info: https://endoflife.date/java Java, as developed by the OpenJDK Project, which is owned and primarily employed by Oracle, has been on a 6-month rapid-release cycle since the

release of Java 10. Starting with Java 11, new LTS releases occur every six releases, or three years. Java 8 is the last release on the old cycle

methodology still in active support. Non-LTS releases are supported for 6 months. The latest supported release in each release cycle can be found

at https://www.oracle.com/java/technologies/java-se-glance.html.

16 Skipped 3/16/2021 Prohibited 9/30/2021

15 Skipped 9/16/2020 Prohibited 3/31/2021

14 Skipped 3/17/2020 Prohibited 9/30/2020

13 Skipped 9/17/2019 Prohibited 3/31/2021

12 Skipped 3/19/2019 Prohibited 9/30/2019

11 (LTS) Divest Execution 9/25/2018 9/30/2024 9/30/2030 1/31/2032 End of Life Info: https://endoflife.date/java

10 Skipped 3/20/2018 Prohibited 9/25/2018

9 Skipped 9/21/2017 Prohibited 3/20/2018

8 (LTS) Prohibited 3/18/2014 Prohibited 3/31/2025

7 and earlier Prohibited 7/7/2011 Prohibited 7/31/2019 First version GA May 1995 from Sun Microsystems.

 https://en.wikipedia.org/wiki/Java_(programming_language)

Oracle PL/SQL All versions

Approved

1995 https://en.wikipedia.org/wiki/PL/SQL Oracle: https://www.oracletutorial.com/plsql-tutorial/what-is-plsql/

Tech on the Net: https://www.techonthenet.com/oracle/index.php

https://endoflife.date/

Programming Languages and Data Access Methods December 2024

Manufacturer Programming Language Name Version
Current

Classification

General

Availability
Projected Approved

Divest:

Plan

Divest:

Execution
Prohibited

Vendor

End of

Support
References Notes

Adobe ColdFusion 2023

Divest Plan

5/31/2023 1/1/2024 6/1/2027 1/1/2028 5/16/2028 Support Date Info:

https://helpx.adobe.com/support/programs/eol-

matrix.html

EA Direction: As applicable update to ColdFusion 2023. Long term - proceed to divest from the ColdFusion programming language entirely prior to it

being prohibited in the COV enterprise in 2029.

EA Rationale: Supporting too many programming languages can create long-term maintenance issues and skill shortage issues within the COV IT

enterprise. Licensing, packaging, frameworks, extended ecosystems and support are key considerations in selecting any programming language.

EA goal: Reduce the quantity of programming languages we officially support. Per Gartner (Dec-2021) and industry programming language trends

as evidenced by job postings, the top languages were: Python; Java; JavaScript; C/C++; C#; and PHP. While ColdFusion's CMFL compares to

PHP's scripting components, it's tag syntax resembles HTML and it's script syntax resembles JavaScript, EA's position is to divest from this

programming language and to not continue investing in it.

2021

Divest Plan

11/11/2020 1/1/2024 1/1/2026 6/1/2026 11/10/2026 Support Date Info:

https://helpx.adobe.com/support/programs/eol-

matrix.html

Release graphic: https://endoflife.date/coldfusion

Release announcement: https://community.adobe.com/t5/coldfusion-discussions/live-introducing-the-2023-release-of-adobe-coldfusion/td-

p/13797706

Downloads: https://helpx.adobe.com/coldfusion/kb/coldfusion-downloads.html#download0

ColdFusion’s lifecycle is typically 5 years after release, with new releases usually about every two years.

Adobe never announces the release date in advance. https://community.adobe.com/t5/coldfusion-discussions/coldfusion-2023-release-date/td-

p/13785784.

Adobe release info: https://helpx.adobe.com/coldfusion/kb/coldfusion-downloads.html#downloads1

2018 and earlier

versions

Prohibited 7/12/2018 7/13/2024 Support Date Info:

https://helpx.adobe.com/support/programs/eol-

matrix.html

One of the distinguishing features of ColdFusion is its associated scripting language, ColdFusion Markup Language (CFML). CFML compares to the

scripting components of ASP, JSP, and PHP in purpose and features, but its tag syntax more closely resembles HTML, while its script syntax

resembles JavaScript. ColdFusion is often used synonymously with CFML, but there are additional CFML application servers besides ColdFusion, and

ColdFusion supports programming languages other than CFML, such as server-side Actionscript and embedded scripts that can be written in a

JavaScript-like language known as CFScript.

Originally a product of Allaire and released on July 2, 1995, ColdFusion was developed by brothers Joseph J. Allaire and Jeremy Allaire. In 2001 Allaire

was acquired by Macromedia, which in turn was acquired by Adobe Systems Inc in 2005. ColdFusion is most often used for data-driven websites or

intranets, but can also be used to generate remote services such as REST services, WebSockets, SOAP web services or Flash remoting. It is especially

well-suited as the server-side technology to the client-side ajax. ColdFusion can also handle asynchronous events such as SMS and instant

messaging via its gateway interface, available in ColdFusion MX 7 Enterprise Edition. https://en.wikipedia.org/wiki/Adobe_ColdFusion

CII Honewell Bull Ada 2012 Prohibited 2012 https://en.wikipedia.org/wiki/Ada_(programming_lang

uage)

https://en.wikipedia.org/wiki/Groupe_Bull

https://curlie.org/Computers/Programming/Languages/Ada

Association for Computing

Machinery (ACM)

ALGOL DG/L Prohibited 1972 https://en.wikipedia.org/wiki/ALGOL

IBM APL APL2 Prohibited 1984 https://en.wikipedia.org/wiki/APL_(programming_lang

uage)

IBM Assembler BAL Prohibited 1964 https://en.wikipedia.org/wiki/IBM_Basic_Assembly_La

nguage_and_successors

Dartmouth BASIC All versions Prohibited 1964 https://en.wikipedia.org/wiki/BASIC

Bell Labs "C" All versions Prohibited 1973 https://en.wikipedia.org/wiki/The_C_Programming_La

nguage

https://www.section.io/engineering-education/history-of-c-programming-language/

Nantucket Corporation Clipper xBase Prohibited 1997 https://en.wikipedia.org/wiki/Clipper_(programming_la

nguage)

aka CA-Clipper

Programming Languages and Data Access Methods December 2024

Manufacturer Programming Language Name Version
Current

Classification

General

Availability
Projected Approved

Divest:

Plan

Divest:

Execution
Prohibited

Vendor

End of

Support
References Notes

CODASYL COBOL All versions Prohibited 1959 https://en.wikipedia.org/wiki/COBOL https://en.wikipedia.org/wiki/CODASYL

Embarcadero Technologies Delphi All versions Prohibited 1995 https://en.wikipedia.org/wiki/Delphi_(software) https://en.wikipedia.org/wiki/History_of_Delphi_(software)

IBM Fortran All versions Prohibited 1957 https://en.wikipedia.org/wiki/Fortran

Software AG Natural Prohibited 1979 https://en.wikipedia.org/wiki/ADABAS#Natural_(4GL) https://en.wikipedia.org/wiki/Natural_language

https://www.xenonstack.com/blog/evolution-of-nlp/

MIT Lisp All LISP-based

languages

Prohibited 1958 https://en.wikipedia.org/wiki/Lisp_(programming_lang

uage)

https://en.wikipedia.org/wiki/List_of_programming_languages_by_type#List-based_languages_%E2%80%93_LISPs

Unisys / Sperry Mapper All versions Prohibited 1975 https://en.wikipedia.org/wiki/MAPPER

Corel Paradox All versions Prohibited 1985 https://en.wikipedia.org/wiki/Paradox_(database)

Berkley Pascal All versions Prohibited 1970 https://en.wikipedia.org/wiki/Pascal_(programming_la

nguage)

https://www.britannica.com/technology/Pascal-computer-language

IBM PL/I All versions Prohibited 1964 https://en.wikipedia.org/wiki/PL/I aka PL/1

IBM Rexx All versions Prohibited 1979 https://en.wikipedia.org/wiki/Rexx

IBM RPG X All versions Prohibited 1959 https://en.wikipedia.org/wiki/IBM_RPG

Programming Languages and Data Access Methods December 2024

Manufacturer Programming Language Name Version
Current

Classification

General

Availability
Projected Approved

Divest:

Plan

Divest:

Execution
Prohibited

Vendor

End of

Support
References Notes

The following data access methods are considered Prohibited technologies per Enterprise Technical Architecture (ETA) direction:

https://www.vita.virginia.gov/media/vitavirginiagov/it-governance/ea/pdf/Legacy-IT-Solutions-Topic-Report.pdf

Vendor Data Access Name Version
Current

Classification

General

Availability

Divest:

Plan

Divest:

Execution

Divest:

Plan

Divest:

Execution
Prohibited

Vendor

End of

Support
References Notes

Adabas Prohibited https://documentation.softwareag.com/natural/nat63

13win/pg/pg_dbms_ada.htm

https://en.wikipedia.org/wiki/Access_method

IMS Prohibited https://flylib.com/books/en/2.869.1.57/1/ https://en.wikipedia.org/wiki/Access_method

https://flylib.com/books/en/2.869.1.58/1/

https://en.wikipedia.org/wiki/IBM_Information_Management_System

VSAM Prohibited https://en.wikipedia.org/wiki/Virtual_Storage_Access_

Method

https://en.wikipedia.org/wiki/Access_method

ISAM Prohibited https://en.wikipedia.org/wiki/ISAM https://en.wikipedia.org/wiki/Access_method

xBase Prohibited https://en.wikipedia.org/wiki/Microsoft_Data_Access_

Components

https://en.wikipedia.org/wiki/Access_method

Paradox Prohibited https://en.wikipedia.org/wiki/Microsoft_Data_Access_

Components

https://en.wikipedia.org/wiki/Access_method

Hierarchical Database Access All Prohibited https://en.wikipedia.org/wiki/Access_method e.g. HSAM, HISAM, HIDAM, HDAM, PHDAM, SHSAM, SHISAM, etc.

Network Database Access All Prohibited https://en.wikipedia.org/wiki/Access_method e.g. BTAM, QTAM, TCAM, VTAM, etc.

Non-security patch updated data

access methods

All Prohibited https://en.wikipedia.org/wiki/Access_method All data access methods and versions without security patching

The following represents COV programming language classifications per Enterprise Technical Architecture (ETA):

https://www.vita.virginia.gov/media/vitavirginiagov/it-governance/ea/pdf/Legacy-IT-Solutions-Topic-Report.pdf

Key Description

Emerging

Projected

Approved

Divest: Plan

Divest: Execute

Prohibited

Skipped

Vendor End of Support

EA Roadmap Definitions

https://www.vita.virginia.gov/policy--governance/enterprise-architecture/ea-roadmap-definitions/
https://www.vita.virginia.gov/policy--governance/enterprise-architecture/ea-roadmap-definitions/

