RGINIA
AGENCY ’

\

Commonwealth of Virginia

Enterprise Architecture Standard (EA-225)

Enterprise Solutions Architecture

Containers

vita.virginia.gov Sept 22, 2025

ESA Container Standard Version 1.0 Sept 2025

Revision History

Version History
Revision Date Description
0.9 4/9/2025 Initial draft document created
1.0 9/1/2025 Finalized language for initial publication

Review Process

This requirements document was posted on the Virginia Information Technologies Agency's (VITA)
Online Review and Comment application (ORCA). All agencies, stakeholders, and the public were
encouraged to provide their comments through ORCA. All comments were evaluated, and individual
commenters were notified of action(s) taken.

Requirements and Agency Exceptions

The requirements included within this document are mandatory. Agencies deviating from these
requirements must request an exception for each desired deviation, and receive an approved enterprise
Architecture Exception via Archer, prior to developing, procuring, or deploying such technology, or not
complying with a requirement specified in this document. The instructions for completing and submitting
an exception request are contained within the Commonwealth Enterprise Architecture Policy.

Glossary

As appropriate, terms and definitions used in this document are in the COV ITRM IT Glossary. The COV
ITRM IT Glossary is available on the VITA website. Additional terms and definitions unique to this
standard can be found in the Definitions section of this document.

References/Links

Other documents referenced or linked in this document are additional resources that agencies or workers
may consult to find best practices and guidelines or obtain increased understanding. Unless expressly
stated in this document, references or links do not incorporate or require compliance with such other
documents.

Page 2 of 16

https://www.vita.virginia.gov/it-governance/glossary/cov-itrm-glossary/
https://www.vita.virginia.gov/it-governance/glossary/cov-itrm-glossary/
https://www.vita.virginia.gov/

ESA Container Standard Version 1.0 Sept 2025

Contents
INEFOAUCTION ...ttt b et h et et e st b et et e st btk e e et ese et et et e st eb et e eeneenes 4
BACKGIOUNG ..ottt ettt ettt ettt et e te e e taeetaeeaseeaseeaseesseeasesaseenseesseesseenseeaseenns 5
[0 0T 1T PP UUPTURPPSRRNt 5
o7] o 1= TSSOSO PP 5
A1 T4 1 RSP SRUSUTRSRR 6
Perspective 1 (Construction and BUild)ccociouiiiieiieiieieeieeeee et 7
Perspective 2 (ValidationS)ciiuiiiiieiiiieeeeeteet ettt ettt et sttt et st reete s ssene e 8
Perspective 3 (DEPIOYMENT).......coiiiiiieeieiictie ettt ettt ettt ss et et ss et esete et e s essessereesesseneens 9
Perspective 4 (MONIOTING)c.veviiuiieieeietict ettt ettt ettt ettt ettt ssete s e s sseseevesse s essereesassessenis 10
DEFINITIONS ..ttt e ettt h ettt s ettt n e ne et et et ne et et et eneeneebe it et ens 11
Tenets and their RAtiON@IEc..oouiiiiiieee ettt e b e easeseseesaeeees 14

Page 3 of 16

ESA Container Standard Version 1.0 Sept 2025

Introduction
Vision and Strategy

Vision

This standard seeks to enable an efficient and secure way for COV agencies to utilize cloud-based
container services. It provides structured guidance on how container technology is to be built, validated,
and deployed within COV public cloud environments. Containers can provide management and runtime
benefits to an organization, but without proper oversight, can elevate agency risk. Providing a set of
requirements and a structured approach to container lifecycle management allows agencies to utilize
this technology in a compliant and secure way. Additionally, agencies are also aided by leveraging a
VITA managed enterprise container repository that provides build, validation, and deployment tooling to
largely automate these mechanisms, thereby reducing the efforts an agency would otherwise take to
deploy to the cloud. Reducing or eliminating work to comply with this standard allows agencies to focus
on the functions that serve their mission.

Running containers in the public cloud permits many governance functions to be performed in an
automated and scalable way. Structured descriptions of software defined infrastructure and security
controls in the form of JSON can be received from cloud providers and checked by software to validate
compliance. The COV efforts to migrate computing services to the cloud can be accelerated by using
modern techniques that can also provide a new model for a scalable governance approach.

Standardized deployment approaches create efficiencies in governance: the number of technology
patterns is reduced which diminishes the complexity that agencies experience when developing a
system for deployment. Consistent container formats ensure smooth orchestration, auto-scaling, and
failover mechanisms in large-scale deployments, which is what the COV is. Developers can focus on
application logic instead of dealing with environment-specific dependencies.

Standardized security practices that are embedded into container templates help mitigate risks like
vulnerabilities and misconfigurations. Deployment via an automated continuous integration/continuous
delivery (CI/CD) pipeline causes manual steps to be eliminated.

Finally, establishing a common operational structure can better foster tool compatibility across agencies
and suppliers. This can result in reusability of function, storage and monitoring approaches. Without
consistency, technology will be consistently re-invented and duplicated, resulting in harder security
efforts, sprawl and therefore cost and risk.

Strategy

Objective 1 Establish consistent and secure deployment practices and methodologies for
containers.

Objective 2 Establish role responsibility and accountability in governance activities.

Objective 3 Provide baseline requirements for the enterprise registry.

Page 4 of 16

ESA Container Standard Version 1.0 Sept 2025

Objective 4 Provide platform agnosticism and portability.

Objective 5 Enable scalable, secure, resilient, and modular architecture.

Background

Containers have become a popular mechanism to bundle, deploy and manage software applications,
especially in the cloud. Containers bundle the entire dependency tree required for running an application
as a single unitized image which decouples the dependency between a container and the host machine’s
file system and library structure. Importantly, system level dependencies are embedded in the container
image, which emancipates the application from the runtime operating system, thereby simplifying
containerized application deployment. Conversely, in a traditional deployment environment, the
application requires the operating system to provide environmental dependencies. This can result in non-
explicit dependencies between potentially unrelated applications. This results in an administrative
overhead to ensure that all applications in a VM environment rely on compatible system libraries.

Compute and storage resources have fallen in cost and can be made available essentially on-demand,
which opens the door for new execution models, which containers are an example. As the COV moves
applications to the public cloud, containerization can be used to facilitate this migration.

Purpose

This standard helps to enable safe and responsible utilization of container technologies across COV
agencies by establishing common, automated practices that reduce risk, improve governance, and which
are supportive of agency technology objectives.

Some of these requirements are only logically applicable when building or running a custom application.
Others still apply when using third-party provided software which is to be bundled into a container. If the
container is provided by a third party as a full image, the container must still be validated as meeting
security rules, including scanning for vulnerabilities, and connectivity rules. If the packaged system
cannot meet these rules, a virtual machine-based deployment should be used instead.

Scope

This standard is currently scoped to cover container production deployments. On-premises based
container deployments must be compatible with and ready to move to an approved public cloud solution
within 5 years. Those systems deployed with containers prior to the publishing of this standard should
develop a plan to migrate to an approved solution within 5 years unless otherwise approved by VITA EA.

This standard is applicable to all Commonwealth agencies (hereinafter collectively referred to as
"agencies") that are responsible for the management, development, purchase and use of information
technology resources in the Commonwealth of Virginia.

Page 50of 16

ESA Container Standard Version 1.0 Sept 2025

This standard does not apply to research projects, research initiatives, or instructional programs at public
institutions of higher education.

In addition to the requirements below all COV IT technology solutions comply with the standards found
on VITA's Policies, Standards & Guidelines.

Authority

Code of Virginia, §2.2-2007 Powers of the CIO

Code of Virginia, §2.2-2007.1 Additional duties of the CIO relating to information technology
planning and budgeting

Code of Virginia, §2.2-2009(A) Additional duties of the CIO relating to security of government
information

Code of Virginia, §2.2-2012(A) Additional powers and duties related to the procurement of

information technology

Page 6 of 16

https://law.lis.virginia.gov/vacode/title2.2/chapter20.1/section2.2-2007/
https://law.lis.virginia.gov/vacode/title2.2/chapter20.1/section2.2-2007.1/
https://law.lis.virginia.gov/vacode/title2.2/chapter20.1/section2.2-2009/
https://law.lis.virginia.gov/vacode/title2.2/chapter20.1/section2.2-2012/

ESA Container Standard Version 1.0 Sept 2025

Principal Requirement Objectives
The standard uses the following tenets to establish the requirements:

¢ Risk Reduction - seek to reduce the presence of risk in a system

e Traceability - identify the cause or source of a specific system component or property

e Consistency — by establishing a repeatable property of the system, the system becomes easier to
maintain, understand, monitor and change.

e Controls — support the measurement of compliance within a system to applicable policy

o Simplification — seeking to reduce the complexity of a system leads to easier manageability
amongst components as dependencies are lessened and easier to identify.

e Scalability - seek to ensure that a system can naturally grow in the amount of work it can perform

¢ Continuity - ensuring that a system is resilient to single points of failure

e Portability — seek to ensure that the system isn't tightly coupled to specific external
dependencies and that the correct abstractions exist.

Each requirement is tagged with the tenets that it supports. These tags follow the requirement text itself.
More information is found in the appendix.

VITA shall provide an enterprise-wide container registry available to all COV agencies if they wish to use
it. The COV enterprise registry shall be partitioned by agency and controls established within the CBTI.
Agencies can also set up their own private registries if they meet the requirements set forth in this
standard.

Perspective 1 (Construction and Build)

The construction and build perspective centers around the process of creating the container by working
with either a pre-built image from a container registry or developing a custom container. Templated
container images help meet baseline requirements to assist agencies to stay compliant with COV security
and architectural standards.

CB-001 Containers shall only be bundled with required dependencies for the application logic
they contain. Risk reduction Simplification

CB-002 Only system and application dependencies that are sourced from approved, baselined
COV system images shall be bundled in a container. Risk reduction

CB-003 Session and long-term state shall not be stored in the container image. Scalability Portability

CB-004 Session and long-term state shall be placed in network accessible shared storage
accessible to authorized accessors. Scalability Continuity Portability

CB-005 Container environments shall be configured using the principle of least privilege. Risk
reduction

Page 7 of 16

ESA Container Standard Version 1.0 Sept 2025

CB-006 Container resources shall not be directly accessible from an external network without a
VITA CSRM approved network filtering and detection device in place. Risk reduction

CB-007 All outbound communications shall only be initiated by processes on the container itself.
Risk reduction Portability Scalability Continuity

CB-008 Container instances shall only accept network connections on the container’'s designated
service request port. Risk reduction Scalability

CB-009 Container images shall use continuous integration/continuous delivery (CI/CD) to

facilitate building, bundling, testing, validation, packaging, and deployment. Risk reduction
Portability Scalability Traceability

CB-010 Containers that are to be used as part of a production system shall be functionally tested
in a non-production environment prior to deployment as part of a continuous
integration/continuous delivery methodology. Risk reduction Consistency

CB-011 Container images shall not have secrets such as tokens, credentials, private keys or other

confidential information bundled within the image or image template. Risk reduction
Consistency Simplification Portability Continuity

CB-012 Containers shall access an approved secret store during runtime for any needed secrets,

configuration or other authentication related data. Risk reduction Consistency Simplification
Portability Continuity

CB-013 Development activities requiring container deployments shall occur in a non-production

classified environment. They shall be deployed to a non-production container registry.
Traceability Controls Risk reduction

CB-014 Deployed container images shall be immutable. Risk reduction Traceability Governance Controls
Consistency

CB-015 Any changes to a deployed container’s image shall require a new container image to be
built, validated and deployed. Risk reduction Traceability Controls Consistency

CB-016 Only VITA EA approved source repositories shall be able to deploy to the COV registry.
Risk reduction Controls Traceability

Perspective 2 (Validations)

Validations are defined as the pre-deployment verification that the contents of the container meet
security requirements. This should include security scanning, validation to baselined OS libraries,
checking for forbidden items, such as shells, or non-required dependencies.

V-001 All pre-deployment testing and validation processes shall occur in an automated manner
with no manual processing. Risk reduction Traceability Simplification

Page 8 of 16

ESA Container Standard Version 1.0 Sept 2025

V-002

V-003

V-004

V-005

V-006

Containers shall be scanned by VITA CSRM authorized security detection and
compliance tools resulting in a successful pass prior to deployment. Risk reduction

Container images shall be scanned for vulnerabilities using a VITA CSRM authorized
vulnerability scanner prior to deployment to a production registry. Risk reduction

Containers must have vulnerabilities remediated according to the COV IT Risk
Management Standard prior to deployment. Risk reduction

The CI/CD pipeline shall log, in structured JSON form, the validations that have been

performed on the released image in accordance with VITA EA requirements. Controls
Traceability

The designated deployment administrator for the container image shall publish the
documentation to the VITA EA designated location. Controls Consistency

Perspective 3 (Deployment)

This section concerns releasing the container image into production once all the necessary validations

have occurred.

D-001
D-002
D-003
D-004

D-005
D-006

D-007

D-008

Page 9 of 16

Containers shall only be deployed to VITA EA approved container management and
deployment services. Consistency Risk reduction

Containers shall only be deployed to U.S. regions and availability zones. Continuity Risk
reduction

Systems that are to be packaged and released via a container shall use automation to
record a bill of materials of all contents. Simplification Traceability

Each container image shall be assigned a unique and immutable tag as a means of
identification. Traceability Consistency

The registry shall store the container image’s unique tag. Consistency Traceability Scalability

A container registry shall only accept images that have at least one tag unique to that
registry. Risk reduction Scalability Traceability

The final container image shall be signed by the deployment team prior to deployment to
demonstrate that it has successfully gone through the validations process and its
security has been verified. Risk reduction Traceability Controls

The final container image checksum shall be electronically signed by the CI/CD system

and stored as associated metadata in the registry for the lifespan of the container image.
Traceability

ESA Container Standard Version 1.0 Sept 2025

D-009

D-010

D-011

D-012

D-013

D-014

D-015

D-016

Containers shall be registered in and deployed using a production classified container
registry. Traceability

Containers that are to be deployed to a production system shall be deployed with a fully
automated pipeline, in which no manual steps are performed during the build, validation
and deployment phases. Traceability Simplification

Errors encountered during build, validation or deployment must be remediated prior to the
container deployment. Risk reduction

Containers cannot be manually manipulated during the build, validate or deployment
phases. Traceability Consistency Continuity Risk reduction

Only container images that have been sourced from the enterprise registry shall be
deployed into a COV production environment. Traceability Risk reduction

Containers shall only be deployed to an on-prem QTS registry after providing a written
rationale and approved by COV EA based on: Risk reduction

e confidentiality

e regulation

e agency or citizen risk

The enterprise registry shall only allow container images to be visible to the accountable
agency. Risk reduction

Agencies shall be accountable to keep their deployed container images current and
secure. Risk reduction

Perspective 4 (Monitoring)

Monitoring activities focus on assessing whether the container and its environment is performing per the
design requirements, remains free of known vulnerabilities, and the collection and processing of
information needed to support these activities.

M-001

M-002

M-003

M-004

Page 10 of 16

Monitoring shall be instrumented at the container group level, and container instance
level in accordance with current CSRM security policies. Risk reduction Continuity

After deployment, if a security vulnerability for a container’s assets is published or
detected, the container shall be rebuilt and redeployed in accordance with current CSRM
security policy. Risk reduction Continuity

Container and Container registry solutions must be integrated with VITA CSRM identified
security solutions for monitoring and compliance. Risk reduction Controls

CSRM shall have the ability to remove container images that are found to contain
vulnerabilities. Risk reduction

ESA Container Standard Version 1.0 Sept 2025

References
For further information on container management practices see NIST Special Publication 800-190.

Definitions
As appropriate, terms and definitions used in this document are included in the COV ITRM IT Glossary.

Availability Zone An availability zone (AZ) is a subdivision within a cloud region that is
designed to maximize fault tolerance and availability. AZs are made
up of one or more data centers that are separated by significant
distances, often miles apart. This separation reduces the likelihood
that more than one AZ will be affected by a disaster, such as a power
outage or natural disaster.

Container Orchestration Container orchestration is the automated process of managing and
coordinating the deployment, scaling, and networking of
containerized applications, simplifying the complex tasks associated
with managing large numbers of containers. Container orchestration
systems automate the deployment and scaling activities of the
container runtime engines.

Container runtime A platform that allows you to instantiate container images as an
executable process, providing the bridging between the container’'s
internal resources and the host kernel. Often container runtimes
provide a control plane to provide the necessary rules and controls
to handle scale out events, resource access and limits. The
container runtime often works together with a container
orchestration system.

Continuous Integration/Continuous Delivery

(Cl/CD) Continuous integration is focused on automatically building and
testing code, as compared to continuous delivery, which automates
the entire software release process up to production. Generally,
incorporating both resolves to a set of software development
practices that automate the process of building, testing, and
deploying code changes frequently, ensuring that new features and
bug fixes are quickly integrated into a shared code repository and
readily available for release to production environments.

Page 11 of 16

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://www.vita.virginia.gov/policy--governance/glossary/cov-itrm-glossary/

ESA Container Standard

Dynamic Analysis

Functional Testing

Hardening

Immutability

Inbound Connections

Long-term State

Microservices Architecture

Page 12 of 16

Version 1.0 Sept 2025

Refers to the practice of monitoring, testing, and evaluating a running
instance of an application for problems, vulnerabilities and defects
that are hard to detect using static analysis. Dynamic analysis can
reveal performance problems, how the system interacts with the
environment it runs in, and security problems. By performing a
runtime analysis, accurate performance metrics can be gathered,
which can highlight resource contention issues, memory access
bottlenecks, and other properties that appear only when the code
base is installed in the environment it operates within.

Functional testing is a process that validates if the software meets
the specified requirements. The objective is to ensure that the
software fulfills the intended purpose and that the functionality it
implements works as specified.

A process of securing a system by exposing only resources that are
required for operational use, ensuring that permissions are only
those required to fulfill the system objective. Additional activities can
include scanning and remediating the system for known
vulnerabilities.

Immutability means an unchangeable, constant form. In the case of
containers, this means that, once a container image has been
constructed, and deployed into a registry for use, it cannot be altered,
added to, or otherwise changed. Every resource inside that container
should be a read only resource.

These are defined as network connections made to the container
and are initiated externally to the container.

The storage of information for extended periods, typically longer
than a user’s specific login session, for future reference, compliance,
or historical analysis. Containers typically are part of a distributed
application and would use network accessible resources. Examples
of long-term state storage mechanisms are shared file systems,
network accessible object stores and databases.

This is a design approach that breaks down an application into
smaller and separate parts, typically running distinctly (such as in
separate run-times) from each other. Often, these smaller
components are then integrated into sequences that comprise
business level transactions.

ESA Container Standard

Outbound Connections

Principle of Least Privilege

Secrets Management System

Session State

Static Analysis

Page 13 of 16

Version 1.0 Sept 2025

These are defined as network connections made from the container
and are initiated by the container to a system external to the
container image.

A security concept that limits access by an actor or system to the
minimum resources and permissions needed to perform their tasks.

A secrets management system helps to securely encrypt, store, and
retrieve credentials for your databases and other services. Instead of
hardcoding credentials within application code or environments, a
secrets management system will retrieve your credentials whenever
needed. A secrets management system helps protect access to IT
resources and data by decoupling rotation and management of
secrets.

The persistence of data associated with a specific user's interaction
with a web application across multiple HTTP requests, allowing for a
more dynamic and personalized experience.

Refers to a practice where code is analyzed prior to execution. Tools
that facilitate static analysis can look for defects in code structure,
code that is non-compliant to guidelines, harmful code patterns,
security vulnerabilities and other information that can be gleaned
from the code base or documentation itself. Static analysis is used
during the coding and can provide a control point in a build pipeline.

ESA Container Standard

Tenets and their Rationale

Version 1.0 Sept 2025

Tenet

Definition

Discussion

Risk Reduction

Seek to reduce the
presence of risk in a
system

Risk can be classified and measured in multiple
ways. Arisk can be classified by the impact it might
have to a domain, such as security, financial,
operational and technical. Risk can be quantified by
its potential impact to a system or environment,
such as minor, major, severe or critical. As systems
increase in complexity and in number of interacting
or inter-dependent components, a problem can
cascade and impact other components, increasing
the impact of the original problem. Taking active
measures to isolate risk and recovery processes
increases system resilience and reduces the impact
of a problem across the whole system, which helps
to reduce the total system risk.

Traceability

Identify the cause or
source of a specific
system component or
property

Being able to identify how and what produced,
modified or removed an element of the system can
help with problem solving, identifying root cause and
process compliance. In systems that employ
multiple components, traceability becomes
important for helping to identify the source of a
system event or failure, which in turn helps reduce
the impact of problems and helps to guide the COV
to the right solution.

Consistency

By establishing a
repeatable property of
the system, the system
becomes easier to
maintain, understand,
monitor and change

Systems that are consistent are cheaper, easier to
troubleshoot, easier to maintain, and easier to scale.
Conversely, a system that has multiple elements that
perform the same function but are implemented
differently requires more time to manage, creates
additional cost and expense to maintain, and creates
a drag on COV resources. This is because the same
functionality must be learned multiple times in
different ways, tested in different ways, and licensed
in different ways to achieve the same functional
outcome. Risk is higher because the number of

Page 14 of 16

ESA Container Standard

Version 1.0 Sept 2025

distinct elements with different ways of failing
increases.

Controls

Support the
measurement of
compliance within a
system to applicable
policy

Controls in this context are mechanisms that are
placed into processes to help measure and prove
compliance with policies. They typically are
classified as risk management mechanisms as they
help reduce organizational exposure to risk by
implementing a means to observe and measure risk.
Controls can be useful because, cumulatively, they
help to quantify and measure an organization'’s or
system'’s total risk exposure and provide information
into a feedback cycle for addressing of those risks.

Simplification

Seeking to reduce the
complexity of a system
leads to easier
manageability amongst
components as
dependencies are
lessened and easier to
identify

Reducing the number of elements that are required
to facilitate a system is a key component of a good
design practice. This is because there are typically
less points of failure, and less redundant
interdependencies. This tenet complements
systemic organization: by designing an organized
system, simplification becomes easier since
patterns can be identified and leveraged to reduce
the number of total elements. Each component
typically requires a scaffold of supporting
infrastructure: testing, documentation, validations,
support mechanisms, and integration into the whole
system. By aiming for simple solutions, we can help
to reduce total cost to the COV and reduce the risk
that the COV must bear for the total system.

Scalability

Seek to ensure that a
system can naturally
grow in the amount of
work it can perform

Systems that have a linear or better relationship
between the operational resources they have access
to and the work that can be performed are
considered scalable. Systems with these properties
must be intentionally designed. Otherwise, resource
and other contentions can develop. Scalability is
typically done in a horizontal manner, with multiple
elements performing the same task. This is in
contrast to a vertical design, where elements don’t
replicate to handle work, but instead perform the
work in a faster manner.

Continuity

Ensuring that a system is

resilient to single points
of failure

Systems that are organized, simple and scalable
typically exhibit resilience in their operation, which
enables continuity of function. This is because the

Page 15 of 16

ESA Container Standard Version 1.0 Sept 2025

system has multiple instantiations of the same
component. The loss of an active component in a
system reduces the capacity of the system to handle
the workload in proportion to the total number of
components actively handling the load. This is a
general rule of systemic risk: if a system is
comprised of 20 components that provide a function
and one component fails, the failure impact is a
capacity reduction of 1/20™ (or 5%) of the total. If a
system is comprised of 3 components and one of
the components fails, the system capacity is
reduced by 1/3', or 33%.

Portability Seek to ensure that the When an element of a system is configured to
system isn’t tightly directly point to an external dependency, it can be
coupled to specific said to be tightly coupled to that external
external dependencies. dependency. If the external dependency is then

changed such that the dependency is no longer
accessible by the referencing element, failure can
occur. A better practice is to abstract dependencies
between components, so that the linkage can be
controlled externally. This is analogous to a
requestor using a middleman, who facilitates the
communication to the person that can supply the
information that the requestor can use. This serves
to decouple the requestor from the provider. A
simple example of this is DNS. Instead of
referencing external dependencies within a container
by direct IP address, DNS enables the container to
reference a service by name, which can be a
constant in the configuration or build files. The DNS
system provides the correct IP address depending
on the locale, availability zone or other dynamic
aspects of a deployment. In this case, the
dependency is abstracted by externalizing the
reference to the environment of the system, instead
of being hard coded to a specific resource which
may not be available if the container runs in a
different availability zone or region.

Page 16 of 16

